Expressions for equivalent E.M.F and Internal Resistance of cells connected in series, parallel

Expressions for equivalent E.M.F and Internal Resistance of cells connected in series, parallel

CELLS IN SERIES AND PARALLEL : 

Derive expressions for equivalent e.m.f. and internal resistance of cells connected in series, parallel and mixed combination.

Cells can be connected in :

(i) series,

(ii) parallel,

(iii) mixed combination.

Cells Connected in Series : 

In series combination of the cells, the negative terminal of a cell is connected to the positive terminal of an other cell, and so on.

(a) Identical Cells Connected in Series: 

Identical Cells Connected in Series:

Consider $n$ identical cells such as $C_1$, $C_2$, $\dots$, $C_n$ each of e.m.f. $\varepsilon$ and internal resistance $r$ connected in series to an external resistance $R$.

Since cells are connected in series, so the total e.m.f. of $n$ cells = $n\varepsilon$.

That is,

    $\varepsilon_{\text{eff}}= \varepsilon + \varepsilon + \varepsilon + \dots n = n\varepsilon$

    $r_{\text{eff}} = r + r + r + \dots \text{upto } n \text{ terms} = nr$

Total resistance = $r_{\text{eff}} + R$

Total resistance = $nr + R$

Hence, eqn. $(i)$ becomes

$ I = \frac{n\varepsilon}{nr + R} $

(i) If $R >>> nr$, then $R + nr \approx R$

$ I = \frac{n\varepsilon}{R} $

$ I = n\left(\frac{\varepsilon}{R}\right) $

Now, $\frac{\varepsilon}{R}$ =Current due to a single cell of negligible internal resistance. Therefore, total current flowing in the circuit $= n$ times the current due to a single cell.

Thus, in order to get a large amount of current from the cells connected in series, the external resistance should be very large as compared to the net internal resistance of the cells.

(ii) If $R << nr$, then $R + nr \approx nr$

Hence, eqn. $(i)$ becomes

$ I = \frac{n\varepsilon}{nr} = \frac{\varepsilon}{r} $

which is equal to the current due to a single cell.

Thus, if large number of cells in series are connected to a very small external resistance, then the current from these cells will be equal to the current due to a single cell. It means, there is no use of such a combination of cells.

(b) Different Cells Connected in Series : 

Different Cells Connected in Series

STEP 1. Consider two cells having e.m.fs. $\varepsilon_1$, $\varepsilon_2$ and internal resistances $r_1$, $r_2$ respectively connected in series . If $V_X$, $V_Y$ and $V_Z$ are potentials at X, Y and Z respectively, then potential difference between X and Y is given by

$ V_{XY} = V_X - V_Y $

But $V_{XY} = \varepsilon_1 - I r_1$, where I is the current flowing in the series combination of cells from Y to X.

$ \therefore \qquad V_{XY} = V_X - V_Y = \varepsilon_1 - I r_1 $

Potential difference between Y and Z is given by :

$ V_{YZ} = V_Y - V_Z$ 

$ V_{YZ}= \varepsilon_2 - I r_2 $

Then

    $V_{XZ} = V_{XY} + V_{YZ} 

$V_{XZ} = (\varepsilon_1 - I r_1) + (\varepsilon_2 - I r_2)$

= $(\varepsilon_1 + \varepsilon_2) - I (r_1 + r_2) \qquad \dots (i)$

Let the series combination of the cells be replaced by single cell of equivalent e.m.f. $\varepsilon_{\text{eq}}$ and internal resistance $r_{\text{eq}}$, then

$ V_{XZ} = \varepsilon_{\text{eq}} - I r_{\text{eq}} \qquad \dots (ii) $

Comparing eqns. $(i)$ and $(ii)$, we have

$ \varepsilon_{\text{eq}} = \varepsilon_1 + \varepsilon_2 \quad \text{and} \quad r_{\text{eq}} = r_1 + r_2 $

STEP 2. If $n$ cells of e.m.fs. $\varepsilon_1$, $\varepsilon_2$, $\dots$, $\varepsilon_n$ and of internal resistance $r_1$, $r_2$, $\dots$, $r_n$ respectively be connected in series, then

Equivalent e.m.f., of all cells,

$ \varepsilon_{\text{eq}} = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n = \sum_{i=1}^{n} \varepsilon_i $

and internal resistance,

$ r_{\text{eq}} = r_1 + r_2 + \dots + r_n = \sum_{i=1}^{n} r_i $

Cells Connected in Parallel : 

In parallel combination of cells, the positive terminal of a cell is connected to positive terminal of other cell and negative terminal of one cell is connected to negative terminal of the other cell.

(a) Identical Cells Connected in Parallel : 

Identical Cells Connected in Parallel

Consider $m$ identical cells such as $C_1$, $C_2$, $\dots$, $C_m$, each of e.m.f. $\varepsilon$ and internal resistance $r$ connected in parallel to an external resistance $R$.

Since cells are connected in parallel, so the total e.m.f. of all cells = e.m.f. of a single cell

$ \varepsilon_{\text{eff}} = \varepsilon $

That is,

Equivalent internal resistance of $m$ cells connected in parallel is given by

$ \frac{1}{r_{\text{eff}}} = \frac{1}{r} + \frac{1}{r} + \dots \text{upto } m $

$ \frac{1}{r_{\text{eff}}} = \frac{m}{r} $

or

$ r_{\text{eff}} = \frac{r}{m} $

Now $r_{\text{eff}}$ and $R$ are in series, therefore, the total resistance of the circuit

$ = r_{\text{eff}} + R = \frac{r}{m} + R $

The current flowing through the circuit is given by

$ I = \frac{\text{Total e.m.f.}}{\text{Total resistance}} $

$ I = \frac{\varepsilon}{\frac{r}{m} + R} = \frac{m\varepsilon}{r + mR} \qquad \dots (ii) $

Special Cases :

(i) If $R >> r$, then $\frac{r}{m} + R \approx R$

$ \therefore \text{ eqn. (ii) becomes, } I = \frac{m\varepsilon}{mR} = \frac{\varepsilon}{R} $

$ I $= current due to a single cell of negligible internal resistance

Therefore, such an arrangement of cells is of no significance.

(ii) If $R << r$, then $\frac{r}{m} + R \approx \frac{r}{m}$

$\therefore$ eqn. (ii) becomes 

$I = \frac{\varepsilon}{r/m} =m\frac{\varepsilon}{r} $

Thus, $I = m$ times the current due to a single cell.

Therefore, in order to get a large current in the circuit, cells may be connected in parallel to a small external resistance.

(b) Different Cells in Parallel : 

Identical Cells Connected in Parallel

Let two cells having e.m.fs $\varepsilon_1$, $\varepsilon_2$ and internal resistances $r_1$, $r_2$ respectively be connected in parallel 

If $I_1$ and $I_2$ are the currents supplied by the cells, then the main current is given by

$ I = I_1 + I_2 \qquad \dots (i) $

Terminal voltage of the cells connected in parallel is same. Let it be $V$.

For first cell,

$V = \varepsilon_1 - I_1 r_1 \quad \text{or} \quad I_1 = \frac{\varepsilon_1 - V}{r_1} $

and for second cell,

$ V = \varepsilon_2 - I_2 r_2 \quad \text{or} \quad I_2 = \frac{\varepsilon_2 - V}{r_2} $

Substituting the values of $I_1$ and $I_2$ in eqn. (i), we get

$I = \frac{\varepsilon_1 - V}{r_1} + \frac{\varepsilon_2 - V}{r_2} = \frac{\varepsilon_1}{r_1} - \frac{V}{r_1} + \frac{\varepsilon_2}{r_2} - \frac{V}{r_2} $

$I = \frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2} - V \left( \frac{1}{r_1} + \frac{1}{r_2} \right)$

$I= \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 r_2} - V \frac{r_1 + r_2}{r_1 r_2} $

or

$V \frac{r_1 + r_2}{r_1 r_2}  = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 r_2} - I$

$V = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2}-I ( \frac{r_1 r_2}{r_1 + r_2}) \qquad \dots (ii) $

Let the parallel grouping of cells be replaced with a single of e.m.f. $\varepsilon_{\text{eq}}$ and internal resistance $r_{\text{eq}}$, then

$V = \varepsilon_{\text{eq}} - I r_{\text{eq}} \qquad \dots (iii) $

Comparing eqns. (ii) and (iii), we get

$\varepsilon_{\text{eq}} = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2} $

and

$ r_{\text{eq}} = \frac{r_1 r_2}{r_1 + r_2}$ or

$\frac{1}{r_{\text{eq}}} = \frac{r_1 + r_2}{r_1 r_2}$

$\frac{1}{r_{\text{eq}}}= \frac{1}{r_1} + \frac{1}{r_2}$

Also

$\frac{\varepsilon_{\text{eq}}}{r_{\text{eq}}} = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 . r_2}$

$\frac{\varepsilon_{\text{eq}}}{r_{\text{eq}}} = \frac{\varepsilon_{1}}{r_1} + \frac{\varepsilon_{2}}{r_2}$

or

$ \varepsilon_{\text{eq}} = \left[ \frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2} \right] r_{\text{eq}} $

Generalising, let $m$ cell of e.m.fs $\varepsilon_1$, $\varepsilon_2$, $\dots$, $\varepsilon_m$ and internal resistances $r_1$, $r_2$, $\dots$, $r_m$ be in parallel grouping, then

$\frac{1}{r_{\text{eq}}} = \frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_m}$

$\varepsilon_{\text{eq}} = \left[ \frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2} + \dots + \frac{\varepsilon_m}{r_m} \right] r_{\text{eq}}$

Previous Post Next Post