Expression For Mutual Inductance of Two Long Co-axial Solenoids - Param Himalaya

Expression For Mutual Inductance of Two Long Co-axial Solenoids - Param Himalaya

Mutual Inductance of Two Long Co-axial Solenoids of Equal Length

Consider two solenoids $S_1$ and $S_2$ such that the solenoid $S_2$ completely surrounds the solenoid $S_1$.

Let length of each solenoid be $l$, and the area of cross-section of each solenoid is $A$. Let $N_1$ and $N_2$ be the total number of turns of solenoid $S_1$ and $S_2$ respectively.

$\therefore$ Number of turns per unit length of solenoid $S_1$ is given by, $n_1 = \frac{N_1}{l}$.

Number of turns per unit length of solenoid $S_2$ is given by, $n_2 = \frac{N_2}{l}$.

Let current $I_1$ flow through solenoid $S_1$. Then magnetic field inside the solenoid $S_1$ is given by,

$ B_1 = \mu_0 n_1 I_1 = \mu_0 \frac{N_1}{l} I_1 $

Magnetic flux linked with each turn of solenoid $S_2$ is given by, 

$d\phi_2 = B_1 A = \mu_0 \frac{N_1}{l} I_1 A$.

Then, total magnetic flux linked with $N_2$ turns of the solenoid $S_2$ is given by

$ \phi_2 = N_2 d\phi_2$

$ \phi_2= N_2 \mu_0 \frac{N_1}{l} I_1 A$

$ \phi_2= \mu_0 \frac{N_1 N_2}{l} A I_1 \quad \dots (1) $

But

$ \phi_2 = M_{12} I_1 \quad \dots (2) $

where $M_{12}$ is the mutual inductance of coil $S_2$ with respect to the coil $S_1$.

From (1) and (2), we get

$ M_{12} I_1 = \mu_0 \frac{N_1 N_2}{l} A I_1$

or

$M_{12} = \mu_0 \frac{N_1 N_2 A}{l} \quad \dots (3) $

Now, let current $I_2$ flows through solenoid $S_2$ and no current flows through the solenoid $S_1$.

The magnetic field inside solenoid $S_2$ is given by,

$ B_2 = \mu_0 n_2 I_2 = \mu_0 \frac{N_2}{l} I_2 $

Magnetic flux linked with each turn of solenoid $S_1$ is given by,

$ d\phi_1 = B_2 A = \mu_0 \frac{N_2}{l} I_2 A $

Total magnetic flux linked with all turns of solenoid $S_1$,

$ \phi_1 = N_1 d\phi_1 = \mu_0 \left(\frac{N_2}{l} I_2 A\right) N_1 = \mu_0 \frac{N_1 N_2}{l} A I_2 \quad \dots (4) $

Also,

$ \phi_1 = M_{21} I_2 \quad \dots (5) $

where $M_{21}$ is the mutual inductance of solenoid $S_1$ w.r.t. solenoid $S_2$.

From eqns. (4) and (5), we get

$ M_{21} I_2 = \mu_0 \frac{N_1 N_2 A}{l} I_2 $

$M_{12} = \mu_0 \frac{N_1 N_2 A}{l} \quad \dots (6) $

Comparing eqns. (3) and (6), we find

$M_{12} = M_{21} = M$(Theorem of reciprocity)

Thus,

$M = \mu_0 \frac{N_1 N_2 A}{l} \quad \dots (7) $

or

$ M = \mu_0 \left(\frac{N_1}{l}\right) \left(\frac{N_2}{l}\right) A l$

$M= \mu_0 n_1 n_2 Al \quad \dots (8)$

If the two solenoids are wound on a material having relative permeability $\mu_r$, then eqn. (8) can be written as

$M = \mu_0 \mu_r \frac{N_1 N_2 A}{l}$

$M= \mu N_1 N_2 \frac{A}{l} \quad (\because \mu = \mu_0 \mu_r) \quad \dots (9) $

Thus, mutual inductance of a pair of solenoids increases if they are wound on a material of relative permeability $\mu_r$.

Previous Post Next Post